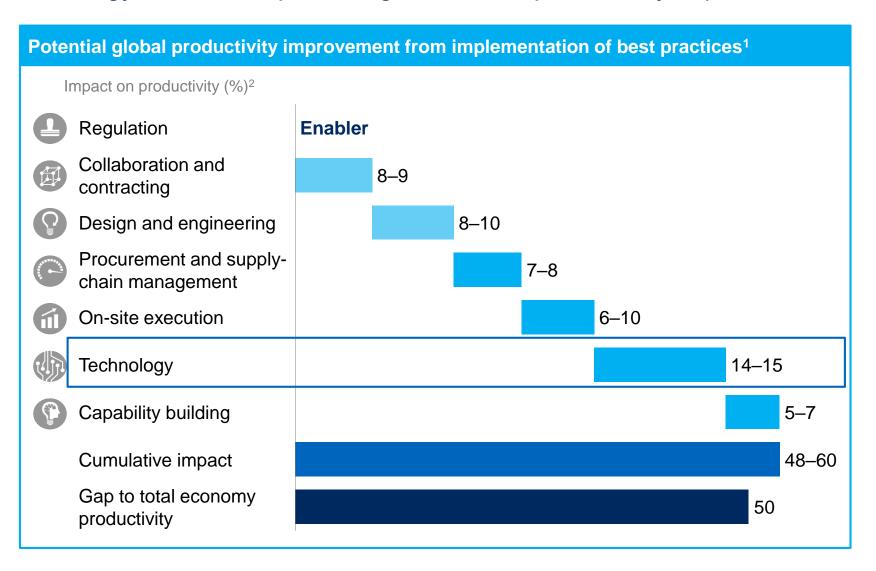


Opening thoughts

- A major disruption is occurring in the Capital Projects & Infrastructure industry
- We believe that a 20-45% reduction in the cost of major development projects is possible through emerging innovations; this is true across asset classes, e.g., energy, public infrastructure, real estate
- In order to capitalize, greenfield Infrastructure Investors, must identify partners who are leading in this area, as well as internal approaches to structure data & insights
- What follows is a summary of the major digital trends in the capital projects industry to help spur our discussion today


Lagging labor productivity has been a critical challenge for major projects and has led to disappointing project outcomes

¹ Based on a sample of 41 countries that generate 96% of global GDP; real gross value added per hour worked by persons engaged, 2005 \$ SOURCE: OECD; WIOD; GGCD-10, World Bank; BEA; BLS; national statistical agencies of Turkey, Malaysia, and Singapore; Rosstat; MGI analysis SOURCE: IHS Herold Global Projects Database (Nov. 19, 2013); Companies' public annual reports; press releases

Technology is the most promising avenue for productivity improvement...

¹ The impact numbers have been scaled down from a best case project number to reflect current levels of adoption and applicability across projects, based on respondents to the MGI Construction Productivity Survey who responded "agree" or "strongly agree" to the questions around implementation of the solutions.

² Range reflects expected difference in impact between emerging and developed markets.

but engineering and construction has historically been one of the least digitized and lowest technology-focused industries in the world

Level of digitization

MGI industry digitization index, 2015

ICT

Media

Professional services

Finance and insurance

Wholesale trade

Advanced manufacturing

Oil and gas

Utilities

Chemicals and pharmaceuticals

Basic goods manufacturing

Mining

Real estate

Transportation and warehousing

Education

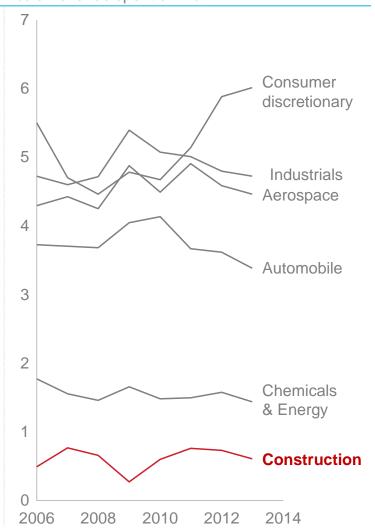
Retail trade

Entertainment and recreation

Personal and local services

Government

Healthcare


Hospitality

CONSTRUCTION

Hunting & Agriculture

R&D investment

% of revenue spent on R&D

Industry leaders are separating themselves by deploying new innovations that can lead to cost improvements of up to ~45%

Production systems

Software-enabled lean construction and supply chain management.

LiDAR as built verification

Frequent LiDAR drone scans capture precise quantities and identify as built errors

3D printing removes construction delays, reduces freight costs, and simplifies supply chain

Robots complete activities more productively, accurately and safely

Advanced analytics

Advanced analytics optimizes integration across teams and execution

Capital portfolio management

Specialized software optimizes capital investment and portfolio management

Virtual reality

Operations staff review facilities and identify hazards during design or construction

5D BIM and beyond

5D BIM is used to unify the 3D model with schedule and budget, adding clarity

Field

Office

Digital performance management

Project leadership assess performance, anticipate issues, and develop action plans

Advanced scanning and virtual reality have created multiple sources of value for capital projects

Survey and geolocation

Drone and 3D-imaging technology create precise, millimeter-level site maps

3D modeling and virtual reality

Virtual reality 3D modeling overlays site location to optimize site layout, prevent hazards, and remove clashes

As-built to as-designed validation

Precise validation (i.e., mm level) of as-built configuration against 3D design models

SOURCE: Veerum

Field automation drives productivity across three levers: labor availability, labor productivity, and rework avoidance

Challenges

Automation solution

Labor **Availability**

 A mismatch between labor availability and project demands

Reduces demand for front-line craft labor

Labor productivity

Labor pool in the construction is increasingly aging and skills are not increasing

- Elimination of low skill tasks
- Enhancement of high skill tasks

Rework avoidance

- Rework has widespread negative impacts to project execution
- Mitigation or elimination of opportunity for human error

Automation is being deployed in both predictable and ad-hoc physical tasks

Drones

Weld machines

Automated excavation

Vehicles

Brick laying

Automated timber construction

Final thoughts

- This is a rapidly changing landscape...but being able to get the digital basics right will continue to be a large differentiator for major project outcomes in the next few years
- Ultimately, the digital tools and innovations we discussed today are just that - tools; organization and culture remain paramount to effective implementation
- Understanding the digital capabilities and innovation programs of contractors and project partners will be an increasingly important value differentiator for greenfield infrastructure investments in the years to-come